1 resultado para Temporal structure
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (8)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (13)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (6)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Boston University Digital Common (3)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (16)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (91)
- Instituto Gulbenkian de Ciência (1)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (9)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- Publishing Network for Geoscientific & Environmental Data (16)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (25)
- Queensland University of Technology - ePrints Archive (519)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (7)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Part of network management is collecting information about the activities that go on around a distributed system and analyzing it in real time, at a deferred moment, or both. The reason such information may be stored in log files and analyzed later is to data-mine it so that interesting, unusual, or abnormal patterns can be discovered. In this paper we propose defining patterns in network activity logs using a dialect of First Order Temporal Logics (FOTL), called First Order Temporal Logic with Duration Constrains (FOTLDC). This logic is powerful enough to describe most network activity patterns because it can handle both causal and temporal correlations. Existing results for data-mining patterns with similar structure give us the confidence that discovering DFOTL patterns in network activity logs can be done efficiently.