7 resultados para Telecommunication -- Switching systems
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
A detailed conceptual and a corresponding analytical traffic models of an overall (virtual) circuit switching telecommunication system are used. The models are relatively close to real-life communication systems with homogeneous terminals. In addition to Normalized and Pie-Models Ensue Model and Denial Traffic concept are proposed, as a parts of a technique for presentation and analysis of overall network traffic models functional structure; The ITU-T definitions for: fully routed, successful and effective attempts, and effective traffic are re-formulated. Definitions for fully routed traffic and successful traffic are proposed, because they are absent in the ITU-T recommendations; A definition of demand traffic (absent in ITU-T Recommendations) is proposed. For each definition are appointed: 1) the correspondent part of the conceptual model graphical presentation; 2) analytical equations, valid for mean values, in a stationary state. This allows real network traffic considered to be classified more precisely and shortly. The proposed definitions are applicable for every telecommunication system.
Resumo:
The aim of this paper is to be determined the network capacity (number of necessary internal switching lines) based on detailed users’ behaviour and demanded quality of service parameters in an overall telecommunication system. We consider detailed conceptual and its corresponded analytical traffic model of telecommunication system with (virtual) circuit switching, in stationary state with generalized input flow, repeated calls, limited number of homogeneous terminals and losses due to abandoned and interrupted dialing, blocked and interrupted switching, not available intent terminal, blocked and abandoned ringing (absent called user) and abandoned conversation. We propose an analytical - numerical solution for finding the number of internal switching lines and values of the some basic traffic parameters as a function of telecommunication system state. These parameters are requisite for maintenance demand level of network quality of service (QoS). Dependencies, based on the numericalanalytical results are shown graphically. For proposed conceptual and its corresponding analytical model a network dimensioning task (NDT) is formulated, solvability of the NDT and the necessary conditions for analytical solution are researched as well. It is proposed a rule (algorithm) and computer program for calculation of the corresponded number of the internal switching lines, as well as corresponded values of traffic parameters, making the management of QoS easily.
Resumo:
Problems for intellectualisation for man-machine interface and methods of self-organization for network control in multi-agent infotelecommunication systems have been discussed. Architecture and principles for construction of network and neural agents for telecommunication systems of new generation have been suggested. Methods for adaptive and multi-agent routing for information flows by requests of external agents- users of global telecommunication systems and computer networks have been described.
Resumo:
In the teletraffic engineering of all the telecommunication networks, parameters characterizing the terminal traffic are used. One of the most important of them is the probability of finding the called (B-terminal) busy. This parameter is studied in some of the first and last papers in Teletraffic Theory. We propose a solution in this topic in the case of (virtual) channel systems, such as PSTN and GSM. We propose a detailed conceptual traffic model and, based on it, an analytical macro-state model of the system in stationary state, with: Bernoulli– Poisson–Pascal input flow; repeated calls; limited number of homogeneous terminals; losses due to abandoned and interrupted dialling, blocked and interrupted switching, not available intent terminal, blocked and abandoned ringing and abandoned conversation. Proposed in this paper approach may help in determination of many network traffic characteristics at session level, in performance evaluation of the next generation mobile networks.
Resumo:
A model of an overall telecommunication network with virtual circuits switching, in stationary state, with Bernoulli-Poisson-Pascal (BPP) input flow, repeated calls, limited number of homogeneous terminals and 8 types of losses is considered. One of the main problems of network redimensioning is estimation of the traffic offered in the network because it reflects on finding of necessary number of equivalent switching lines on the basis of the consideration of detailed users behavior and target Quality of Service (QoS). The aim of this paper is to find a new solution of Network Redimensioning Task (NRDT) [4], taking into account the inconvenience of necessary measurements, not considered in the previous research [5]. The results are applicable for redimensioning of every (virtual) circuit switching telecommunication system, both for wireline and wireless systems (GSM, PSTN, ISDN and BISDN). For packet - switching networks proposed approach may be used as a comparison basis and when they work in circuit switching mode (e.g. VoIP).
Resumo:
The article presents a new type of logs merging tool for multiple blade telecommunication systems based on the development of a new approach. The introduction of the new logs merging tool (the Log Merger) can help engineers to build a processes behavior timeline with a flexible system of information structuring used to assess the changes in the analyzed system. This logs merging system based on the experts experience and their analytical skills generates a knowledge base which could be advantageous in further decision-making expert system development. This paper proposes and discusses the design and implementation of the Log Merger, its architecture, multi-board analysis of capability and application areas. The paper also presents possible ways of further tool improvement e.g. - to extend its functionality and cover additional system platforms. The possibility to add an analysis module for further expert system development is also considered.
Resumo:
A class of priority systems with non-zero switching times, referred as generalized priority systems, is considered. Analytical results regarding the distribution of busy periods, queue lengths and various auxiliary characteristics are presented. These results can be viewed as generalizations of the Kendall functional equation and the Pollaczek-Khintchin transform equation, respectively. Numerical algorithms for systems’ busy periods and traffic coefficients are developed. ACM Computing Classification System (1998): 60K25.