4 resultados para T-parallelism
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
ransition P-systems are based on biological membranes and try to emulate cell behavior and its evolution due to the presence of chemical elements. These systems perform computation through transition between two consecutive configurations, which consist in a m-tuple of multisets present at any moment in the existing m regions of the system. Transition between two configurations is performed by using evolution rules also present in each region. Among main Transition P-systems characteristics are massive parallelism and non determinism. This work is part of a very large project and tries to determine the design of a hardware circuit that can improve remarkably the process involved in the evolution of a membrane. Process in biological cells has two different levels of parallelism: the first one, obviously, is the evolution of each cell inside the whole set, and the second one is the application of the rules inside one membrane. This paper presents an evolution of the work done previously and includes an improvement that uses massive parallelism to do transition between two states. To achieve this, the initial set of rules is transformed into a new set that consists in all their possible combinations, and each of them is treated like a new rule (participant antecedents are added to generate a new multiset), converting an unique rule application in a way of parallelism in the means that several rules are applied at the same time. In this paper, we present a circuit that is able to process this kind of rules and to decode the result, taking advantage of all the potential that hardware has to implement P Systems versus previously proposed sequential solutions.
Resumo:
Membrane systems are computational equivalent to Turing machines. However, its distributed and massively parallel nature obtain polynomial solutions opposite to traditional non-polynomial ones. Nowadays, developed investigation for implementing membrane systems has not yet reached the massively parallel character of this computational model. Better published approaches have achieved a distributed architecture denominated “partially parallel evolution with partially parallel communication” where several membranes are allocated at each processor, proxys are used to communicate with membranes allocated at different processors and a policy of access control to the communications is mandatory. With these approaches, it is obtained processors parallelism in the application of evolution rules and in the internal communication among membranes allocated inside each processor. Even though, external communications share a common communication line, needed for the communication among membranes arranged in different processors, are sequential. In this work, we present a new hierarchical architecture that reaches external communication parallelism among processors and substantially increases parallelization in the application of evolution rules and internal communications. Consequently, necessary time for each evolution step is reduced. With all of that, this new distributed hierarchical architecture is near to the massively parallel character required by the model.
Resumo:
The basic construction concepts of many-valued intellectual systems, which are adequate to primal problems of person activity and using hybrid tools with many-valued intellectual systems being two-place, but simulating neuron processes of space toting which are different on a level of actions, inertial and threshold of properties of neuron diaphragms, and also frequency modification of the following transmitted messages are created. All enumerated properties and functions in point of fact are essential not only are discrete on time, but also many-valued.
Resumo:
This article presents the principal results of the Ph.D. thesis Investigation and classification of doubly resolvable designs by Stela Zhelezova (Institute of Mathematics and Informatics, BAS), successfully defended at the Specialized Academic Council for Informatics and Mathematical Modeling on 22 February 2010.