1 resultado para Stark, Laura: The magical self:
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Aberdeen University (4)
- Academic Archive On-line (Stockholm University; Sweden) (7)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (21)
- Archive of European Integration (4)
- Aston University Research Archive (32)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (56)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (33)
- Cochin University of Science & Technology (CUSAT), India (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (33)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Dalarna University College Electronic Archive (10)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (5)
- Digital Commons at Florida International University (39)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (45)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (4)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (8)
- Instituto Superior de Psicologia Aplicada - Lisboa (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (14)
- Nottingham eTheses (4)
- Portal de Revistas Científicas Complutenses - Espanha (9)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (5)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (109)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- School of Medicine, Washington University, United States (2)
- Scielo España (1)
- Scielo Saúde Pública - SP (8)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (14)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (21)
- Universidade Católica Portuguesa (1)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (11)
- Universidade dos Açores - Portugal (4)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (27)
- Universidade Metodista de São Paulo (18)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (35)
- Université de Montréal (3)
- Université de Montréal, Canada (43)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (15)
- University of Queensland eSpace - Australia (40)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.