2 resultados para Stable And Unstable Manifolds
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (20)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (25)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Boston University Digital Common (2)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (54)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (128)
- Cochin University of Science & Technology (CUSAT), India (14)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- eScholarship Repository - University of California (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (13)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (67)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (18)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (28)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (49)
- Queensland University of Technology - ePrints Archive (76)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (91)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Metodista de São Paulo (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (16)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (14)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
In this survey article we discuss some recent results concerning strong spectral estimates for Ruelle transfer operators for contact flows on basic sets similar to these of Dolgopyat obtained in the case of Anosov flows with C1 stable and unstable foliations. Some applications of Dolgopyat's results and the more recent ones are also described.
Resumo:
Let (Xi ) be a sequence of i.i.d. random variables, and let N be a geometric random variable independent of (Xi ). Geometric stable distributions are weak limits of (normalized) geometric compounds, SN = X1 + · · · + XN , when the mean of N converges to infinity. By an appropriate representation of the individual summands in SN we obtain series representation of the limiting geometric stable distribution. In addition, we study the asymptotic behavior of the partial sum process SN (t) = ⅀( i=1 ... [N t] ) Xi , and derive series representations of the limiting geometric stable process and the corresponding stochastic integral. We also obtain strong invariance principles for stable and geometric stable laws.