3 resultados para Sovereign default

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "recursive" definition of Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the "recursive" fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning of the fixed-point is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original "recursive" definition of Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonmonotonic logic called Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan Formula and its converse hold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reflective Logic and Default Logic are both generalized so as to allow universally quantified variables to cross modal scopes whereby the Barcan formula and its converse hold. This is done by representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before the defaults. The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are then compared by deriving metatheorems of Z that express their relationships. The main result is to show that every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the equivalence for Quantified Reflective Logic. It is further shown that Quantified Reflective Logic and Quantified Default Logic have exactly the same solutions when no default has an entailment condition.