4 resultados para Slot-based task-splitting algorithms
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper present a technique based on genetic algorithms for generating online adaptive services. Online adaptive systems provide flexible services to a mass of clients/users for maximising some system goals, they dynamically adapt the form and the content of the issued services while the population of clients evolve over time. The idea of online genetic algorithms (online GAs) is to use the online clients response behaviour as a fitness function in order to produce the next generation of services. The principle implemented in online GAs, “the application environment is the fitness”, allow modelling highly evolutionary domains where both services providers and clients change and evolve over time. The flexibility and the adaptive behaviour of this approach seems to be very relevant and promising for applications characterised by highly dynamical features such as in the web domain (online newspapers, e- markets, websites and advertising engines). Nevertheless the proposed technique has a more general aim for application environments characterised by a massive number of anonymous clients/users which require personalised services, such as in the case of many new IT applications.
Resumo:
This paper continues the author’s team research on development, implementation, and experimentation of a task-oriented environment for teaching and learning algorithms. This environment is a part of a large-scale environment for course teaching in different domains. The paper deals only with the UML project of the teaching team’s side of the environment.. The implementation of the project ideas is demonstrated on a WINDOWS-based environment’s prototype.
Resumo:
Today, due to globalization of the world the size of data set is increasing, it is necessary to discover the knowledge. The discovery of knowledge can be typically in the form of association rules, classification rules, clustering, discovery of frequent episodes and deviation detection. Fast and accurate classifiers for large databases are an important task in data mining. There is growing evidence that integrating classification and association rules mining, classification approaches based on heuristic, greedy search like decision tree induction. Emerging associative classification algorithms have shown good promises on producing accurate classifiers. In this paper we focus on performance of associative classification and present a parallel model for classifier building. For classifier building some parallel-distributed algorithms have been proposed for decision tree induction but so far no such work has been reported for associative classification.
Resumo:
This paper considers the problem of concept generalization in decision-making systems where such features of real-world databases as large size, incompleteness and inconsistence of the stored information are taken into account. The methods of the rough set theory (like lower and upper approximations, positive regions and reducts) are used for the solving of this problem. The new discretization algorithm of the continuous attributes is proposed. It essentially increases an overall performance of generalization algorithms and can be applied to processing of real value attributes in large data tables. Also the search algorithm of the significant attributes combined with a stage of discretization is developed. It allows avoiding splitting of continuous domains of insignificant attributes into intervals.