5 resultados para Semi-arid conditions
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.
Resumo:
It is shown that the spheres S^(2n) (resp: S^k with k ≡ 1 mod 4) can be given neither an indefinite metric of any signature (resp: of signature (r, k − r) with 2 ≤ r ≤ k − 2) nor an almost paracomplex structure. Further for every given Riemannian metric on an almost para-Hermitian manifold with the associated 2-form φ one can construct an almost Hermitian structure (under certain conditions, two different almost Hermitian structures) whose associated 2-form(s) is φ.
Resumo:
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].
Resumo:
∗ The work is partially supported by NSFR Grant No MM 409/94.
Resumo:
Митрофан М. Чобан, Петър Ст. Кендеров, Уорън Б. Муурс - Полу-топологична група (съответно, топологична група) е група, снабдена с топология, относно която груповата оперция произведение е частично непрекъсната по всяка от променливите (съответно, непрекъсната по съвкупност от променливите и обратната операция е също непрекъсната). В настоящата работа ние даваме условия, от топологичен характер, една полу-топологична група да е всъщност топологична група. Например, ние показваме, че всяка сепарабелна псевдокомпактна полу-топологична група е топологична група. Показваме също, че всяка локално псевдокомпактна полу-топологична група, чиято групова операция е непрекъсната по съвкупност от променливите е топологична група.