2 resultados para Segmented HPGe
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Image content interpretation is much dependent on segmentations efficiency. Requirements for the image recognition applications lead to a nessesity to create models of new type, which will provide some adaptation between law-level image processing, when images are segmented into disjoint regions and features are extracted from each region, and high-level analysis, using obtained set of all features for making decisions. Such analysis requires some a priori information, measurable region properties, heuristics, and plausibility of computational inference. Sometimes to produce reliable true conclusion simultaneous processing of several partitions is desired. In this paper a set of operations with obtained image segmentation and a nested partitions metric are introduced.
Resumo:
In this paper, a new method for offline handwriting recognition is presented. A robust algorithm for handwriting segmentation has been described here with the help of which individual characters can be segmented from a word selected from a paragraph of handwritten text image which is given as input to the module. Then each of the segmented characters are converted into column vectors of 625 values that are later fed into the advanced neural network setup that has been designed in the form of text files. The networks has been designed with quadruple layered neural network with 625 input and 26 output neurons each corresponding to a character from a-z, the outputs of all the four networks is fed into the genetic algorithm which has been developed using the concepts of correlation, with the help of this the overall network is optimized with the help of genetic algorithm thus providing us with recognized outputs with great efficiency of 71%.