4 resultados para Search space reduction
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper, we propose an unsupervised methodology to automatically discover pairs of semantically related words by highlighting their local environment and evaluating their semantic similarity in local and global semantic spaces. This proposal di®ers from previous research as it tries to take the best of two different methodologies i.e. semantic space models and information extraction models. It can be applied to extract close semantic relations, it limits the search space and it is unsupervised.
Resumo:
Sequential pattern mining is an important subject in data mining with broad applications in many different areas. However, previous sequential mining algorithms mostly aimed to calculate the number of occurrences (the support) without regard to the degree of importance of different data items. In this paper, we propose to explore the search space of subsequences with normalized weights. We are not only interested in the number of occurrences of the sequences (supports of sequences), but also concerned about importance of sequences (weights). When generating subsequence candidates we use both the support and the weight of the candidates while maintaining the downward closure property of these patterns which allows to accelerate the process of candidate generation.
Resumo:
In this paper the technique of shorter route determination of fire engine to the fire place on time minimization criterion with the use of evolutionary modeling is offered. The algorithm of its realization on the base of complete and optimized space of search of possible decisions is explored. The aspects of goal function forming and program realization of method having a special purpose are considered. Experimental verification is executed and the results of comparative analysis with the expert conclusions are considered.
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a.