1 resultado para SOMATOSTATIN ANALOGS
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Aberdeen University (2)
- Adam Mickiewicz University Repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (11)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (14)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (30)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (172)
- Boston University Digital Common (2)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (16)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (15)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (29)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (11)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (5)
- Digital Knowledge Repository of Central Drug Research Institute (4)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (22)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (6)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (6)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (63)
- National Center for Biotechnology Information - NCBI (108)
- Publishing Network for Geoscientific & Environmental Data (21)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (19)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (63)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (20)
- Université de Montréal (1)
- Université de Montréal, Canada (19)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (26)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.