3 resultados para Riviera Maya
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.
Resumo:
High breakdown point estimators LME(k) and LT E(k) for location and scale are obtained for symmetrical exponentially decreasing density family.
Resumo:
We obtain new combinatorial upper and lower bounds for the potential energy of designs in q-ary Hamming space. Combined with results on reducing the number of all feasible distance distributions of such designs this gives reasonable good bounds. We compute and compare our lower bounds to recently obtained universal lower bounds. Some examples in the binary case are considered.