2 resultados para River monitoring network
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The development of the distributed information measurement and control system for optical spectral research of particle beam and plasma objects and the execution of laboratory works on Physics and Engineering Department of Petrozavodsk State University are described. At the hardware level the system is represented by a complex of the automated workplaces joined into computer network. The key element of the system is the communication server, which supports the multi-user mode and distributes resources among clients, monitors the system and provides secure access. Other system components are formed by equipment servers (CАМАC and GPIB servers, a server for the access to microcontrollers MCS-196 and others) and the client programs that carry out data acquisition, accumulation and processing and management of the course of the experiment as well. In this work the designed by the authors network interface is discussed. The interface provides the connection of measuring and executive devices to the distributed information measurement and control system via Ethernet. This interface allows controlling of experimental parameters by use of digital devices, monitoring of experiment parameters by polling of analog and digital sensors. The device firmware is written in assembler language and includes libraries for Ethernet-, IP-, TCP- и UDP-packets forming.
Resumo:
Floods represent the most devastating natural hazards in the world, affecting more people and causing more property damage than any other natural phenomena. One of the important problems associated with flood monitoring is flood extent extraction from satellite imagery, since it is impractical to acquire the flood area through field observations. This paper presents a method to flood extent extraction from synthetic-aperture radar (SAR) images that is based on intelligent computations. In particular, we apply artificial neural networks, self-organizing Kohonen’s maps (SOMs), for SAR image segmentation and classification. We tested our approach to process data from three different satellite sensors: ERS-2/SAR (during flooding on Tisza river, Ukraine and Hungary, 2001), ENVISAT/ASAR WSM (Wide Swath Mode) and RADARSAT-1 (during flooding on Huaihe river, China, 2007). Obtained results showed the efficiency of our approach.