6 resultados para Quality Management Systems
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper we consider two computer systems and the dynamic Web technologies they are using. Different contemporary dynamic web technologies are described in details and their advantages and disadvantages have been shown. Specific applications are developed, clinic and studying systems, and their programming models are described. Finally we implement these two applications in the students education process: Online studying has been tested in the Technical University – Varna, Web based clinic system has been used for practical education of the students in the Medical College - Sofia, branch V. Tarnovo
Resumo:
ACM Computing Classification System (1998): D.2.5, D.2.9, D.2.11.
Resumo:
Computer software plays an important role in business, government, society and sciences. To solve real-world problems, it is very important to measure the quality and reliability in the software development life cycle (SDLC). Software Engineering (SE) is the computing field concerned with designing, developing, implementing, maintaining and modifying software. The present paper gives an overview of the Data Mining (DM) techniques that can be applied to various types of SE data in order to solve the challenges posed by SE tasks such as programming, bug detection, debugging and maintenance. A specific DM software is discussed, namely one of the analytical tools for analyzing data and summarizing the relationships that have been identified. The paper concludes that the proposed techniques of DM within the domain of SE could be well applied in fields such as Customer Relationship Management (CRM), eCommerce and eGovernment. ACM Computing Classification System (1998): H.2.8.
Resumo:
Every year production volume of castings grows, especially grows production volume of non-ferrous metals, thanks to aluminium. As a result, requirements to castings quality also increase. Foundry men from all over the world put all their efforts to manage the problem of casting defects. In this article the authors present an approach based on the use of cognitive models that help to visualize inner cause-and-effect relations leading to casting defects in the foundry process. The cognitive models mentioned comprise a diverse network of factors and their relations, which together thoroughly describe all the details of the foundry process and their influence on the appearance of castings’ defects and other aspects.. Moreover, the article contains an example of a simple die casting model and results of simulation. Implementation of the proposed method will help foundry men reveal the mechanism and the main reasons of casting defects formation.
Resumo:
Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be solved. However, usually SP/PS are not substantiated well enough, because their development is based on a collective expertise in which logic of natural language and expert estimation methods are used. That is why scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and vague problems.
Resumo:
Organizations are seeking new, integrated systems that enable rapid changes through early identification of opportunities and problems, tracking of progress against plans, flexible allocation of resources to achieve goals, and consistent operations. Total Quality Management (TQM) is an overall business strategy. It means that all activities of the company will be focused on satisfying all stakeholders of the company. TQM can be realised by using the EFQM model. The EFQM model is a tool that organizations may use as a framework for self-evaluation that enables an organization to identify its strengths and areas for improvement and the extent to which its operations and results are in line with the characteristics of an excellent organization. We focus on a training organisation or to the learning department of an organization. So we are limiting the EFQM model to the training /learning activities. We can apply EFQM perfect on the level of an activity (business line) of a company. We selected the main criteria for which the learner can play the role of assessor. So only three main criteria left: the enabling resources, the enabling processes and the (learning) results for the learner. We limited the last one to “learning results” based on the Kirkpatrick model.