8 resultados para Projective plane braid group

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most outstanding problems in combinatorial mathematics and geometry is the problem of existence of finite projective planes whose order is not a prime power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakalo ff , Sofia, July, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): E.4.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 14N10, 14C17.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∗The author supported by Contract NSFR MM 402/1994.