3 resultados para Production Rules
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The biggest threat to any business is a lack of timely and accurate information. Without all the facts, businesses are pressured to make critical decisions and assess risks and opportunities based largely on guesswork, sometimes resulting in financial losses and missed opportunities. The meteoric rise of Databases (DB) appears to confirm the adage that “information is power”, but the stark reality is that information is useless if one has no way to find what one needs to know. It is more accurate perhaps to state that, “the ability to find information is power”. In this paper we show how Instantaneous Database Access System (IDAS) can make a crucial difference by pulling data together and allowing users to summarise information quickly from all areas of a business organisation.
Resumo:
The purpose is to develop expert systems where by-analogy reasoning is used. Knowledge “closeness” problems are known to frequently emerge in such systems if knowledge is represented by different production rules. To determine a degree of closeness for production rules a distance between predicates is introduced. Different types of distances between two predicate value distribution functions are considered when predicates are “true”. Asymptotic features and interrelations of distances are studied. Predicate value distribution functions are found by empirical distribution functions, and a procedure is proposed for this purpose. An adequacy of obtained distribution functions is tested on the basis of the statistical 2 χ –criterion and a testing mechanism is discussed. A theorem, by which a simple procedure of measurement of Euclidean distances between distribution function parameters is substituted for a predicate closeness determination one, is proved for parametric distribution function families. The proposed distance measurement apparatus may be applied in expert systems when reasoning is created by analogy.
Resumo:
In this paper a new method for image retrieval using high level color semantic features is proposed. It is based on extraction of low level color characteristics and their conversion into high level semantic features using Johannes Itten theory of color, Dempster-Shafer theory of evidence and fuzzy production rules.