11 resultados para Prediction error method

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62H30, 62P99

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The “trial and errormethod is fundamental for Master Minddecision algorithms. On the basis of Master Mind games and strategies weconsider some data mining methods for tests using students as teachers.Voting, twins, opposite, simulate and observer methods are investigated.For a pure data base these combinatorial algorithms are faster then manyAI and Master Mind methods. The complexities of these algorithms arecompared with basic combinatorial methods in AI. ACM Computing Classification System (1998): F.3.2, G.2.1, H.2.1, H.2.8, I.2.6.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

* This work was financially supported by RFBR-04-01-00858.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

* This work was financially supported by RFBR-04-01-00858.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the work [1] we proposed an approach of forming a consensus of experts’ statements in pattern recognition. In this paper, we present a method of aggregating sets of individual statements into a collective one for the case of forecasting of quantitative variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* The work is supported by RFBR, grant 04-01-00858-a

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* The work was supported by the RFBR under Grant N07-01-00331a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62F15.