2 resultados para Practical stability
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Stability of nonlinear impulsive differential equations with "supremum" is studied. A special type of stability, combining two different measures and a dot product on a cone, is defined. Perturbing cone-valued piecewise continuous Lyapunov functions have been applied. Method of Razumikhin as well as comparison method for scalar impulsive ordinary differential equations have been employed.
Resumo:
The usual assumption that the processing times of the operations are known in advance is the strictest one in scheduling theory. This assumption essentially restricts practical aspects of deterministic scheduling theory since it is not valid for the most processes arising in practice. The paper is devoted to a stability analysis of an optimal schedule, which may help to extend the significance of scheduling theory for decision-making in the real-world applications. The term stability is generally used for the phase of an algorithm, at which an optimal solution of a problem has already been found, and additional calculations are performed in order to study how solution optimality depends on variation of the numerical input data.