1 resultado para Population genetic
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (45)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (10)
- Aston University Research Archive (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (35)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (3)
- CentAUR: Central Archive University of Reading - UK (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (104)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Duke University (11)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (59)
- Helda - Digital Repository of University of Helsinki (58)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (23)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (1)
- National Center for Biotechnology Information - NCBI (12)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (101)
- Queensland University of Technology - ePrints Archive (129)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (97)
- SAPIENTIA - Universidade do Algarve - Portugal (11)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Université de Lausanne, Switzerland (5)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (23)
- University of Washington (1)
Resumo:
The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-deterministic optimization algorithms. Experiments have been performed optimizing several random queries against a randomly generated data dictionary. The proposed adaptive genetic algorithm with probabilistic selection operator outperforms in a number of test runs the canonical genetic algorithm with Elitist selection as well as two common random search strategies and proves to be a viable alternative to existing non-deterministic optimization approaches.