27 resultados para Polynomial Roots

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we give su±cient conditions for k-th approximations of the polynomial roots of f(x) when the Maehly{Aberth{Ehrlich, Werner-Borsch-Supan, Tanabe, Improved Borsch-Supan iteration methods fail on the next step. For these methods all non-attractive sets are found. This is a subsequent improvement of previously developed techniques and known facts. The users of these methods can use the results presented here for software implementation in Distributed Applications and Simulation Environ- ments. Numerical examples with graphics are shown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is dedicated to Prof. Nikolay Kyurkchiev on the occasion of his 70th anniversary This paper gives sufficient conditions for kth approximations of the zeros of polynomial f (x) under which Kyurkchiev’s method fails on the next step. The research is linked with an attack on the global convergence hypothesis of this commonly used in practice method (as correlate hypothesis for Weierstrass–Dochev’s method). Graphical examples are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12D10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∗ Partially supported by INTAS grant 97-1644

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13P05, 14M15, 14M17, 14L30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present F LQ, a quadratic complexity bound on the values of the positive roots of polynomials. This bound is an extension of FirstLambda, the corresponding linear complexity bound and, consequently, it is derived from Theorem 3 below. We have implemented FLQ in the Vincent-Akritas-Strzeboński Continued Fractions method (VAS-CF) for the isolation of real roots of polynomials and compared its behavior with that of the theoretically proven best bound, LM Q. Experimental results indicate that whereas F LQ runs on average faster (or quite faster) than LM Q, nonetheless the quality of the bounds computed by both is about the same; moreover, it was revealed that when VAS-CF is run on our benchmark polynomials using F LQ, LM Q and min(F LQ, LM Q) all three versions run equally well and, hence, it is inconclusive which one should be used in the VAS-CF method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ Research partially supported by INTAS grant 97-1644

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new method which is a generalization of the Ehrlich-Kjurkchiev method is developed. The method allows to find simultaneously all roots of the algebraic equation in the case when the roots are supposed to be multiple with known multiplicities. The offered generalization does not demand calculation of derivatives of order higher than first simultaneously keeping quaternary rate of convergence which makes this method suitable for application from practical point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Dedicated to the memory of Prof. N. Obreshkoff

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eccentric connectivity index of a graph G, ξ^C, was proposed by Sharma, Goswami and Madan. It is defined as ξ^C(G) = ∑ u ∈ V(G) degG(u)εG(u), where degG(u) denotes the degree of the vertex x in G and εG(u) = Max{d(u, x) | x ∈ V (G)}. The eccentric connectivity polynomial is a polynomial version of this topological index. In this paper, exact formulas for the eccentric connectivity polynomial of Cartesian product, symmetric difference, disjunction and join of graphs are presented.