8 resultados para Place recognition algorithm

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimates Calculating Algorithms have a long story of application to recognition problems. Furthermore they have formed a basis for algebraic recognition theory. Yet use of ECA polynomials was limited to theoretical reasoning because of complexity of their construction and optimization. The new recognition method “AVO- polynom” based upon ECA polynomial of simple structure is described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a new method for offline handwriting recognition is presented. A robust algorithm for handwriting segmentation has been described here with the help of which individual characters can be segmented from a word selected from a paragraph of handwritten text image which is given as input to the module. Then each of the segmented characters are converted into column vectors of 625 values that are later fed into the advanced neural network setup that has been designed in the form of text files. The networks has been designed with quadruple layered neural network with 625 input and 26 output neurons each corresponding to a character from a-z, the outputs of all the four networks is fed into the genetic algorithm which has been developed using the concepts of correlation, with the help of this the overall network is optimized with the help of genetic algorithm thus providing us with recognized outputs with great efficiency of 71%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the technique of shorter route determination of fire engine to the fire place on time minimization criterion with the use of evolutionary modeling is offered. The algorithm of its realization on the base of complete and optimized space of search of possible decisions is explored. The aspects of goal function forming and program realization of method having a special purpose are considered. Experimental verification is executed and the results of comparative analysis with the expert conclusions are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper treats the task for cluster analysis of a given assembly of objects on the basis of the information contained in the description table of these objects. Various methods of cluster analysis are briefly considered. Heuristic method and rules for classification of the given assembly of objects are presented for the cases when their division into classes and the number of classes is not known. The algorithm is checked by a test example and two program products (PP) – learning systems and software for company management. Analysis of the results is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach of normal ECG recognition based on scale-space signal representation is proposed. The approach utilizes curvature scale-space signal representation used to match visual objects shapes previously and dynamic programming algorithm for matching CSS representations of ECG signals. Extraction and matching processes are fast and experimental results show that the approach is quite robust for preliminary normal ECG recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The task of smooth and stable decision rules construction in logical recognition models is considered. Logical regularities of classes are defined as conjunctions of one-place predicates that determine the membership of features values in an intervals of the real axis. The conjunctions are true on a special no extending subsets of reference objects of some class and are optimal. The standard approach of linear decision rules construction for given sets of logical regularities consists in realization of voting schemes. The weighting coefficients of voting procedures are done as heuristic ones or are as solutions of complex optimization task. The modifications of linear decision rules are proposed that are based on the search of maximal estimations of standard objects for their classes and use approximations of logical regularities by smooth sigmoid functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel approach for character recognition has been presented with the help of genetic operators which have evolved from biological genetics and help us to achieve highly accurate results. A genetic algorithm approach has been described in which the biological haploid chromosomes have been implemented using a single row bit pattern of 315 values which have been operated upon by various genetic operators. A set of characters are taken as an initial population from which various new generations of characters are generated with the help of selection, crossover and mutation. Variations of population of characters are evolved from which the fittest solution is found by subjecting the various populations to a new fitness function developed. The methodology works and reduces the dissimilarity coefficient found by the fitness function between the character to be recognized and members of the populations and on reaching threshold limit of the error found from dissimilarity, it recognizes the character. As the new population is being generated from the older population, traits are passed on from one generation to another. We present a methodology with the help of which we are able to achieve highly efficient character recognition.