9 resultados para Piecewise constant argument
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
Linguistic theory, cognitive, information, and mathematical modeling are all useful while we attempt to achieve a better understanding of the Language Faculty (LF). This cross-disciplinary approach will eventually lead to the identification of the key principles applicable in the systems of Natural Language Processing. The present work concentrates on the syntax-semantics interface. We start from recursive definitions and application of optimization principles, and gradually develop a formal model of syntactic operations. The result – a Fibonacci- like syntactic tree – is in fact an argument-based variant of the natural language syntax. This representation (argument-centered model, ACM) is derived by a recursive calculus that generates a mode which connects arguments and expresses relations between them. The reiterative operation assigns primary role to entities as the key components of syntactic structure. We provide experimental evidence in support of the argument-based model. We also show that mental computation of syntax is influenced by the inter-conceptual relations between the images of entities in a semantic space.
Resumo:
Mathematics Subject Classification: 26D10.
Resumo:
2010 Mathematics Subject Classification: 37K40, 35Q15, 35Q51, 37K15.
Resumo:
ACM Computing Classification System (1998): G.1.1, G.1.2.
Resumo:
2000 Mathematics Subject Classification: 52A10.
Resumo:
2000 Mathematics Subject Classification: Primary 53B35, Secondary 53C50.