1 resultado para Parasympathetic Neurons
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- University of Cagliari UniCA Eprints (1)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (32)
- Aston University Research Archive (22)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (85)
- Boston University Digital Common (8)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (26)
- Cambridge University Engineering Department Publications Database (30)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (45)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (11)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (51)
- Indian Institute of Science - Bangalore - Índia (74)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (147)
- Nottingham eTheses (2)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (88)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (70)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (5)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (6)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (2)
- University of Queensland eSpace - Australia (38)
- University of Washington (2)
Resumo:
Information extraction or knowledge discovery from large data sets should be linked to data aggregation process. Data aggregation process can result in a new data representation with decreased number of objects of a given set. A deterministic approach to separable data aggregation means a lesser number of objects without mixing of objects from different categories. A statistical approach is less restrictive and allows for almost separable data aggregation with a low level of mixing of objects from different categories. Layers of formal neurons can be designed for the purpose of data aggregation both in the case of deterministic and statistical approach. The proposed designing method is based on minimization of the of the convex and piecewise linear (CPL) criterion functions.