23 resultados para POLYNOMIAL-RINGS
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.
Resumo:
∗ Partially supported by INTAS grant 97-1644
Resumo:
∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.
Resumo:
* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.
Resumo:
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Resumo:
Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).
Resumo:
* Dedicated to the memory of Prof. N. Obreshkoff
Resumo:
Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90
Resumo:
In the present work are described the algorithms that generate all near-rings on finite cyclic groups of order 16 to 29.
Resumo:
We give a brief exposition of the history of the group rings and some their generalizations. Also we indicate some information of certain problems and results.
Resumo:
The eccentric connectivity index of a graph G, ξ^C, was proposed by Sharma, Goswami and Madan. It is defined as ξ^C(G) = ∑ u ∈ V(G) degG(u)εG(u), where degG(u) denotes the degree of the vertex x in G and εG(u) = Max{d(u, x) | x ∈ V (G)}. The eccentric connectivity polynomial is a polynomial version of this topological index. In this paper, exact formulas for the eccentric connectivity polynomial of Cartesian product, symmetric difference, disjunction and join of graphs are presented.
Resumo:
2000 Mathematics Subject Classification: Primary 20C07, 20K10, 20K20, 20K21; Secondary 16U60, 16S34.
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
2000 Mathematics Subject Classification: Primary 13A99; Secondary 13A15, 13B02, 13E05.
Resumo:
000 Mathematics Subject Classification: Primary 16R50, Secondary 16W55.