8 resultados para Orthogonal polynomials in several variables
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
∗ Partially supported by Grant MM-428/94 of MESC.
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
Partially supported by the Bulgarian Science Fund contract with TU Varna, No 487.
Resumo:
2000 Mathematics Subject Classification: 41A10, 30E10, 41A65.
Resumo:
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Contract No MM 1405. Part of the results were announced at the Fifth International Workshop on Optimal Codes and Related Topics (OCRT), White Lagoon, June 2007, Bulgaria
Resumo:
Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...
Resumo:
2000 Mathematics Subject Classification: 30C40, 30D50, 30E10, 30E15, 42C05.