5 resultados para Orthogonal Activation Functions

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper, an ontogenic artificial neural network (ANNs) is proposed. The network uses orthogonal activation functions that allow significant reducing of computational complexity. Another advantage is numerical stability, because the system of activation functions is linearly independent by definition. A learning procedure for proposed ANN with guaranteed convergence to the global minimum of error function in the parameter space is developed. An algorithm for structure network structure adaptation is proposed. The algorithm allows adding or deleting a node in real-time without retraining of the network. Simulation results confirm the efficiency of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new double-wavelet neuron architecture obtained by modification of standard wavelet neuron, and its learning algorithm are proposed. The offered architecture allows to improve the approximation properties of wavelet neuron. Double-wavelet neuron and its learning algorithm are examined for forecasting non-stationary chaotic time series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Supported by INTAS 2000-626, INTAS YSF 03-55-1969, INTAS INNO 182, and TIC 2003-09319-c03-03.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper new non-conventional growing neural network is proposed. It coincides with the Cascade- Correlation Learning Architecture structurally, but uses ortho-neurons as basic structure units, which can be adjusted using linear tuning procedures. As compared with conventional approximating neural networks proposed approach allows significantly to reduce time required for weight coefficients adjustment and the training dataset size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∗ Partially supported by Grant MM-428/94 of MESC.