6 resultados para Order of Convergence
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv.
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.
Resumo:
AMS subject classification: 49N35,49N55,65Lxx.
Resumo:
The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakalo ff , Sofia, July, 2006.
Resumo:
If ξ is a countable ordinal and (fk) a sequence of real-valued functions we define the repeated averages of order ξ of (fk). By using a partition theorem of Nash-Williams for families of finite subsets of positive integers it is proved that if ξ is a countable ordinal then every sequence (fk) of real-valued functions has a subsequence (f'k) such that either every sequence of repeated averages of order ξ of (f'k) converges uniformly to zero or no sequence of repeated averages of order ξ of (f'k) converges uniformly to zero. By the aid of this result we obtain some results stronger than Mazur’s theorem.
Resumo:
In this paper a new method which is a generalization of the Ehrlich-Kjurkchiev method is developed. The method allows to find simultaneously all roots of the algebraic equation in the case when the roots are supposed to be multiple with known multiplicities. The offered generalization does not demand calculation of derivatives of order higher than first simultaneously keeping quaternary rate of convergence which makes this method suitable for application from practical point of view.