11 resultados para Optimal linear feedback control
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.
Resumo:
2000 Mathematics Subject Classi cation: 49L60, 60J60, 93E20.
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.
Resumo:
The emergence of digital imaging and of digital networks has made duplication of original artwork easier. Watermarking techniques, also referred to as digital signature, sign images by introducing changes that are imperceptible to the human eye but easily recoverable by a computer program. Usage of error correcting codes is one of the good choices in order to correct possible errors when extracting the signature. In this paper, we present a scheme of error correction based on a combination of Reed-Solomon codes and another optimal linear code as inner code. We have investigated the strength of the noise that this scheme is steady to for a fixed capacity of the image and various lengths of the signature. Finally, we compare our results with other error correcting techniques that are used in watermarking. We have also created a computer program for image watermarking that uses the newly presented scheme for error correction.
Resumo:
Swallowable capsule endoscopy is used for non-invasive diagnosis of some gastrointestinal (GI) organs. However, control over the position of the capsule is a major unresolved issue. This study presents a design for steering the capsule based on magnetic levitation. The levitation is stabilized with the aid of a computer-aided feedback control system and diamagnetism. Peristaltic and gravitational forces to be overcome were calculated. A levitation setup was built to analyze the feasibility of using Hall Effect sensors to locate the in- vivo capsule. CAD software Maxwell 3D (Ansoft, Pittsburgh, PA) was used to determine the dimensions of the resistive electromagnets required for levitation and the feasibility of building them was examined. Comparison based on design complexity was made between positioning the patient supinely and upright.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.
Resumo:
In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.
Resumo:
In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.
Resumo:
AMS Subj. Classification: 49J15, 49M15
Resumo:
Цветомир Цачев - В настоящия доклад се прави преглед на някои резултати от областта на оптималното управление на непрекъснатите хетерогенни системи, публикувани в периодичната научна литература в последните години. Една динамична система се нарича хетерогенна, ако всеки от нейните елементи има собствена динамиката. Тук разглеждаме оптимално управление на системи, чиято хетерогенност се описва с едномерен или двумерен параметър – на всяка стойност на параметъра отговаря съответен елемент на системата. Хетерогенните динамични системи се използват за моделиране на процеси в икономиката, епидемиологията, биологията, опазване на обществената сигурност (ограничаване на използването на наркотици) и др. Тук разглеждаме модел на оптимално инвестиране в образование на макроикономическо ниво [11], на ограничаване на последствията от разпространението на СПИН [9], на пазар на права за въглеродни емисии [3, 4] и на оптимален макроикономически растеж при повишаване на нивото на върховите технологии [1]. Ключови думи: оптимално управление, непрекъснати хетерогенни динамични системи, приложения в икономиката и епидемиолегията
Resumo:
2000 Mathematics Subject Classification: 62H15, 62P10.