32 resultados para Optical pattern recognition Data processing
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Carte du Ciel (from French, map of the sky) is a part of a 19th century extensive international astronomical project whose goal was to map the entire visible sky. The results of this vast effort were collected in the form of astrographic plates and their paper representatives that are called astrographic maps and are widely distributed among many observatories and astronomical institutes over the world. Our goal is to design methods and algorithms to automatically extract data from digitized Carte du Ciel astrographic maps. This paper examines the image processing and pattern recognition techniques that can be adopted for automatic extraction of astronomical data from stars’ triple expositions that can aid variable stars detection in Carte du Ciel maps.
Resumo:
Earlier the authors have suggested a logical level description of classes which allows to reduce a solution of various pattern recognition problems to solution of a sequence of one-type problems with the less dimension. Here conditions of the effectiveness of the use of such a level descriptions are proposed.
Resumo:
This paper focuses on a problem of Grid system decomposition by developing its object model. Unified Modelling Language (UML) is used as a formalization tool. This approach is motivated by the complexity of the system being analysed and the need for simulation model design.
Resumo:
Logic based Pattern Recognition extends the well known similarity models, where the distance measure is the base instrument for recognition. Initial part (1) of current publication in iTECH-06 reduces the logic based recognition models to the reduced disjunctive normal forms of partially defined Boolean functions. This step appears as a way to alternative pattern recognition instruments through combining metric and logic hypotheses and features, leading to studies of logic forms, hypotheses, hierarchies of hypotheses and effective algorithmic solutions. Current part (2) provides probabilistic conclusions on effective recognition by logic means in a model environment of binary attributes.
Resumo:
The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.
Resumo:
In this paper conceptual foundations for the development of Grid systems that aimed for satellite data processing are discussed. The state of the art of development of such Grid systems is analyzed, and a model of Grid system for satellite data processing is proposed. An experience obtained within the development of the Grid system for satellite data processing in the Space Research Institute of NASU-NSAU is discussed.
Resumo:
Implementation of GEOSS/GMES initiative requires creation and integration of service providers, most of which provide geospatial data output from Grid system to interactive user. In this paper approaches of DOS- centers (service providers) integration used in Ukrainian segment of GEOSS/GMES will be considered and template solutions for geospatial data visualization subsystems will be suggested. Developed patterns are implemented in DOS center of Space Research Institute of National Academy of Science of Ukraine and National Space Agency of Ukraine (NASU-NSAU).
Resumo:
* This work was financially supported by RFBR-04-01-00858.
Resumo:
The problem of decision functions quality in pattern recognition is considered. An overview of the approaches to the solution of this problem is given. Within the Bayesian framework, we suggest an approach based on the Bayesian interval estimates of quality on a finite set of events.
Resumo:
The paper is devoted to the description of hybrid pattern recognition method developed by research groups from Russia, Armenia and Spain. The method is based upon logical correction over the set of conventional neural networks. Output matrices of neural networks are processed according to the potentiality principle which allows increasing of recognition reliability.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
Data processing services for Meteosat geostationary satellite are presented. Implemented services correspond to the different levels of remote-sensing data processing, including noise reduction at preprocessing level, cloud mask extraction at low-level and fractal dimension estimation at high-level. Cloud mask obtained as a result of Markovian segmentation of infrared data. To overcome high computation complexity of Markovian segmentation parallel algorithm is developed. Fractal dimension of Meteosat data estimated using fractional Brownian motion models.
Resumo:
In this paper, a modification for the high-order neural network (HONN) is presented. Third order networks are considered for achieving translation, rotation and scale invariant pattern recognition. They require however much storage and computation power for the task. The proposed modified HONN takes into account a priori knowledge of the binary patterns that have to be learned, achieving significant gain in computation time and memory requirements. This modification enables the efficient computation of HONNs for image fields of greater that 100 × 100 pixels without any loss of pattern information.
Resumo:
In this work the new pattern recognition method based on the unification of algebraic and statistical approaches is described. The main point of the method is the voting procedure upon the statistically weighted regularities, which are linear separators in two-dimensional projections of feature space. The report contains brief description of the theoretical foundations of the method, description of its software realization and the results of series of experiments proving its usefulness in practical tasks.
Resumo:
ACM Computing Classification System (1998): I.7, I.7.5.