1 resultado para Oppian, fl. 2nd cent.
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (21)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (74)
- Aston University Research Archive (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (12)
- CentAUR: Central Archive University of Reading - UK (58)
- Center for Jewish History Digital Collections (14)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (8)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (71)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (6)
- Helda - Digital Repository of University of Helsinki (2)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (5)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Ministerio de Cultura, Spain (14)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (14)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (42)
- Queensland University of Technology - ePrints Archive (161)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- School of Medicine, Washington University, United States (2)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (1)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (8)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (289)
- University of Queensland eSpace - Australia (6)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.