6 resultados para Numbers, Divisibility of.

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are four resolvable Steiner triple systems on fifteen elements. Some generalizations of these systems are presented here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An approximate number is an ordered pair consisting of a (real) number and an error bound, briefly error, which is a (real) non-negative number. To compute with approximate numbers the arithmetic operations on errors should be well-known. To model computations with errors one should suitably define and study arithmetic operations and order relations over the set of non-negative numbers. In this work we discuss the algebraic properties of non-negative numbers starting from familiar properties of real numbers. We focus on certain operations of errors which seem not to have been sufficiently studied algebraically. In this work we restrict ourselves to arithmetic operations for errors related to addition and multiplication by scalars. We pay special attention to subtractability-like properties of errors and the induced “distance-like” operation. This operation is implicitly used under different names in several contemporary fields of applied mathematics (inner subtraction and inner addition in interval analysis, generalized Hukuhara difference in fuzzy set theory, etc.) Here we present some new results related to algebraic properties of this operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 30C10, 32A30, 30G35

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means that in every r-coloring of the vertices of G there exists a monochromatic ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the vertex Folkman numbers F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G} We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem 3) and F (a1 , . . . , ar ; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently Garashuk and Lisonek evaluated Kloosterman sums K (a) modulo 4 over a finite field F3m in the case of even K (a). They posed it as an open problem to characterize elements a in F3m for which K (a) ≡ 1 (mod4) and K (a) ≡ 3 (mod4). In this paper, we will give an answer to this problem. The result allows us to count the number of elements a in F3m belonging to each of these two classes.