2 resultados para Noise signals
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
A solar power satellite is paid attention to as a clean, inexhaustible large- scale base-load power supply. The following technology related to beam control is used: A pilot signal is sent from the power receiving site and after direction of arrival estimation the beam is directed back to the earth by same direction. A novel direction-finding algorithm based on linear prediction technique for exploiting cyclostationary statistical information (spatial and temporal) is explored. Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property, corresponding to the underlying periodicity arising from carrier frequencies or baud rates. The problem was solved by using both cyclic second-order statistics and cyclic higher-order statistics. By evaluating the corresponding cyclic statistics of the received data at certain cycle frequencies, we can extract the cyclic correlations of only signals with the same cycle frequency and null out the cyclic correlations of stationary additive noise and all other co-channel interferences with different cycle frequencies. Thus, the signal detection capability can be significantly improved. The proposed algorithms employ cyclic higher-order statistics of the array output and suppress additive Gaussian noise of unknown spectral content, even when the noise shares common cycle frequencies with the non-Gaussian signals of interest. The proposed method completely exploits temporal information (multiple lag ), and also can correctly estimate direction of arrival of desired signals by suppressing undesired signals. Our approach was generalized over direction of arrival estimation of cyclostationary coherent signals. In this paper, we propose a new approach for exploiting cyclostationarity that seems to be more advanced in comparison with the other existing direction finding algorithms.
Resumo:
It is well established that accent recognition can be as accurate as up to 95% when the signals are noise-free, using feature extraction techniques such as mel-frequency cepstral coefficients and binary classifiers such as discriminant analysis, support vector machine and k-nearest neighbors. In this paper, we demonstrate that the predictive performance can be reduced by as much as 15% when the signals are noisy. Specifically, in this paper we perturb the signals with different levels of white noise, and as the noise become stronger, the out-of-sample predictive performance deteriorates from 95% to 80%, although the in-sample prediction gives overly-optimistic results. ACM Computing Classification System (1998): C.3, C.5.1, H.1.2, H.2.4., G.3.