8 resultados para Network on chip
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
questions of forming of learning sets for artificial neural networks in problems of lossless data compression are considered. Methods of construction and use of learning sets are studied. The way of forming of learning set during training an artificial neural network on the data stream is offered.
Resumo:
With the development of the Internet culture applications are becoming simpler and simpler, users need less IT knowledge than earlier; from the ‘reader’ status they have reached that of the content creator and editor. In our days, the effects of the web are becoming stronger and stronger— computer-aided work is conventional almost everywhere. The spread of the Internet applications has several reasons: first of all, their accessibility is widespread; second, their use is not limited to only one computer or network on which they have been installed. Also, the quantity of accessible information now and earlier is not even comparable. Not counting the applications which need high broadband or high counting capacity (for example video editing), Internet applications are reaching the functionality of the thick clients associates. The most serious disadvantage of Internet applications – for security reasons — is that the resources of the client computer are not fully accessible or accessible only to a restricted extent. Still thick clients do have some advantages: better multimedia perdormance with more flexibility due to local resources and the possibility for offline working.
Resumo:
The aim of this paper is to be determined the network capacity (number of necessary internal switching lines) based on detailed users’ behaviour and demanded quality of service parameters in an overall telecommunication system. We consider detailed conceptual and its corresponded analytical traffic model of telecommunication system with (virtual) circuit switching, in stationary state with generalized input flow, repeated calls, limited number of homogeneous terminals and losses due to abandoned and interrupted dialing, blocked and interrupted switching, not available intent terminal, blocked and abandoned ringing (absent called user) and abandoned conversation. We propose an analytical - numerical solution for finding the number of internal switching lines and values of the some basic traffic parameters as a function of telecommunication system state. These parameters are requisite for maintenance demand level of network quality of service (QoS). Dependencies, based on the numericalanalytical results are shown graphically. For proposed conceptual and its corresponding analytical model a network dimensioning task (NDT) is formulated, solvability of the NDT and the necessary conditions for analytical solution are researched as well. It is proposed a rule (algorithm) and computer program for calculation of the corresponded number of the internal switching lines, as well as corresponded values of traffic parameters, making the management of QoS easily.
Resumo:
The paper is devoted to the description of hybrid pattern recognition method developed by research groups from Russia, Armenia and Spain. The method is based upon logical correction over the set of conventional neural networks. Output matrices of neural networks are processed according to the potentiality principle which allows increasing of recognition reliability.
Resumo:
It is proposed an agent approach for creation of intelligent intrusion detection system. The system allows detecting known type of attacks and anomalies in user activity and computer system behavior. The system includes different types of intelligent agents. The most important one is user agent based on neural network model of user behavior. Proposed approach is verified by experiments in real Intranet of Institute of Physics and Technologies of National Technical University of Ukraine "Kiev Polytechnic Institute”.
Resumo:
This paper is dedicated to modelling of network maintaining based on live example – maintaining ATM banking network, where any problems are mean money loss. A full analysis is made in order to estimate valuable and not-valuable parameters based on complex analysis of available data. Correlation analysis helps to estimate provided data and to produce a complex solution of increasing network maintaining effectiveness.
Resumo:
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Resumo:
In the world, scientific studies increase day by day and computer programs facilitate the human’s life. Scientists examine the human’s brain’s neural structure and they try to be model in the computer and they give the name of artificial neural network. For this reason, they think to develop more complex problem’s solution. The purpose of this study is to estimate fuel economy of an automobile engine by using artificial neural network (ANN) algorithm. Engine characteristics were simulated by using “Neuro Solution” software. The same data is used in MATLAB to compare the performance of MATLAB is such a problem and show its validity. The cylinder, displacement, power, weight, acceleration and vehicle production year are used as input data and miles per gallon (MPG) are used as target data. An Artificial Neural Network model was developed and 70% of data were used as training data, 15% of data were used as testing data and 15% of data is used as validation data. In creating our model, proper neuron number is carefully selected to increase the speed of the network. Since the problem has a nonlinear structure, multi layer are used in our model.