12 resultados para NILPOTENT
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.
Resumo:
2000 Mathematics Subject Classification: 20M20, 20M10.
Resumo:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.
Resumo:
This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.
Resumo:
We survey counterexamples to Hilbert’s Fourteenth Problem, beginning with those of Nagata in the late 1950s, and including recent counterexamples in low dimension constructed with locally nilpotent derivations. Historical framework and pertinent references are provided. We also include 8 important open questions.
Resumo:
Let F C 0 be the class of all finite groups, and for each nonnegative
integer n define by induction the group class FC^(n+1) consisting of
all groups G such that for every element x the factor group G/CG (
Resumo:
∗ The research of the author was supported by the Alexander v. Humboldt-Stiftung.
Resumo:
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30
Resumo:
2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.
Resumo:
2000 Mathematics Subject Classification: 13N15, 13A50, 13F20.
Resumo:
2000 Mathematics Subject Classification: 47A10, 47A12, 47A30, 47B10, 47B20, 47B37, 47B47, 47D50.
Resumo:
2000 Mathematics Subject Classification: 20F16, 20E15.