1 resultado para Mine inspection
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (41)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (32)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (23)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (16)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (46)
- Harvard University (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (7)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (23)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (73)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad Politécnica de Madrid (14)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (336)
- University of Queensland eSpace - Australia (122)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Sequential pattern mining is an important subject in data mining with broad applications in many different areas. However, previous sequential mining algorithms mostly aimed to calculate the number of occurrences (the support) without regard to the degree of importance of different data items. In this paper, we propose to explore the search space of subsequences with normalized weights. We are not only interested in the number of occurrences of the sequences (supports of sequences), but also concerned about importance of sequences (weights). When generating subsequence candidates we use both the support and the weight of the candidates while maintaining the downward closure property of these patterns which allows to accelerate the process of candidate generation.