2 resultados para Maximum Power Point Tracking algorithms
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.
Resumo:
In this paper a genetic algorithm (GA) is applied on Maximum Betweennes Problem (MBP). The maximum of the objective function is obtained by finding a permutation which satisfies a maximal number of betweenness constraints. Every permutation considered is genetically coded with an integer representation. Standard operators are used in the GA. Instances in the experimental results are randomly generated. For smaller dimensions, optimal solutions of MBP are obtained by total enumeration. For those instances, the GA reached all optimal solutions except one. The GA also obtained results for larger instances of up to 50 elements and 1000 triples. The running time of execution and finding optimal results is quite short.