14 resultados para Mathematical Processes

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematical modeling may have different purposes in chemical and biochemical engineering sciences. One of them is to confirm or to reject kinetic models for certain processes, or to evaluate the importance of some transport phenomena on the net chemical or biochemical reaction rate. In the present paper different microbial processes are considered and modeled for evaluation of kinetic constants for batch and continuous processes accomplished by free and immobilized microbial cells. The practical examples are from the field of wastewater treatment and biosynthesis of products, like enzymes, lactic acid, gluconic acid, etc. By the aid of mathematical modeling the kinetics and the type of inhibition are specified for microbial wastewater denitrification and biodegradation of halogenated hydrocarbons. The importance of free and immobilized cells and their separate contribution to the overall microbial process is also evaluated for some fermentation processes: gluconic acid production, dichloroethane biodegradation, lactic acid fermentation and monochloroacetic acid biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is supported by Bulgarian NFSI, grant No. MM–704/97

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching processes are built up from single-line processes, whereas the regular ones are mixtures of left-tail trivial processes with a Poisson family structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we indicate how integer-valued autoregressive time series Ginar(d) of ordre d, d ≥ 1, are simple functionals of multitype branching processes with immigration. This allows the derivation of a simple criteria for the existence of a stationary distribution of the time series, thus proving and extending some results by Al-Osh and Alzaid [1], Du and Li [9] and Gauthier and Latour [11]. One can then transfer results on estimation in subcritical multitype branching processes to stationary Ginar(d) and get consistency and asymptotic normality for the corresponding estimators. The technique covers autoregressive moving average time series as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are performed in support of our modelling approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical Bienaymé-Galton-Watson (BGW) branching process can be interpreted as mathematical model of population dynamics when the members of an isolated population reproduce themselves independently of each other according to a stochastic law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60F05

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60J80, Secondary 60G99.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60G51, secondary 60G70, 60F17.