48 resultados para Mathematical Model, Chlamydia Trachomatis, Partial Differential Equation, Immune
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: 60H15, 60H40
Resumo:
An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
In this paper are examined some classes of linear and non-linear analytical systems of partial differential equations. Compatibility conditions are found and if they are satisfied, the solutions are given as functional series in a neighborhood of a given point (x = 0).
Resumo:
Mathematics Subject Classification: 26A33, 76M35, 82B31
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
2000 Mathematics Subject Classification: 34K15, 34C10.
Resumo:
Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.
Resumo:
Research and development of mathematical model of optimum distribution of resources (basically financial) for maintenance of the new (raised) quality (reliability) of complex system concerning, which the decision on its re-structuring is accepted, is stated. The final model gives answers (algorithm of calculation) to questions: how many elements of system to allocate on modernization, which elements, up to what level of depth modernization of each of allocated is necessary, and optimum answers are by criterion of minimization of financial charges.
Resumo:
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.
Resumo:
Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.
Resumo:
2000 Mathematics Subject Classification: 42B10, 43A32.
Resumo:
2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05