14 resultados para MULTI-RELATIONAL DATA MINING
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The purpose of this paper is to explain the notion of clustering and a concrete clustering method- agglomerative hierarchical clustering algorithm. It shows how a data mining method like clustering can be applied to the analysis of stocks, traded on the Bulgarian Stock Exchange in order to identify similar temporal behavior of the traded stocks. This problem is solved with the aid of a data mining tool that is called XLMiner™ for Microsoft Excel Office.
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.
Resumo:
Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.
Resumo:
AMS Subj. Classification: 62P10, 62H30, 68T01
Resumo:
This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.
Resumo:
Computer software plays an important role in business, government, society and sciences. To solve real-world problems, it is very important to measure the quality and reliability in the software development life cycle (SDLC). Software Engineering (SE) is the computing field concerned with designing, developing, implementing, maintaining and modifying software. The present paper gives an overview of the Data Mining (DM) techniques that can be applied to various types of SE data in order to solve the challenges posed by SE tasks such as programming, bug detection, debugging and maintenance. A specific DM software is discussed, namely one of the analytical tools for analyzing data and summarizing the relationships that have been identified. The paper concludes that the proposed techniques of DM within the domain of SE could be well applied in fields such as Customer Relationship Management (CRM), eCommerce and eGovernment. ACM Computing Classification System (1998): H.2.8.
Resumo:
The paper presents a case study of geo-monitoring a region consisting in the capturing and encoding of human expertise into a knowledge-based system. As soon as the maps have been processed, the data patterns are detected using knowledge-based agents for the harvest prognosis.
Resumo:
The method (algorithm BIDIMS) of multivariate objects display to bidimensional structure in which the sum of differences of objects properties and their nearest neighbors is minimal is being described. The basic regularities on the set of objects at this ordering become evident. Besides, such structures (tables) have high inductive opportunities: many latent properties of objects may be predicted on their coordinates in this table. Opportunities of a method are illustrated on an example of bidimentional ordering of chemical elements. The table received in result practically coincides with the periodic Mendeleev table.
Resumo:
The concept of knowledge is the central one used when solving the various problems of data mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of modern logic: the inductive inference and the deductive inference. The first one is used for extracting the knowledge from the data. The second is applied when the knowledge is used for calculation of the goal attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite predicates represented by logical vectors and matrices.
Resumo:
A novel association rule mining algorithm is composed, using the unit cube chain decomposition structures introduced in [HAN, 1966; TON, 1976]. [HAN, 1966] established the chain split theory. [TON, 1976] invented an excellent chain computation framework which brings chain split into the practical domain. We integrate these technologies around the rule mining procedures. Effectiveness is related to the intention of low complexity of rules mined. Complexity of the procedure composed is complementary to the known Apriori algorithm which is defacto standard in rule mining area.
Resumo:
Resource discovery is one of the key services in digitised cultural heritage collections. It requires intelligent mining in heterogeneous digital content as well as capabilities in large scale performance; this explains the recent advances in classification methods. Associative classifiers are convenient data mining tools used in the field of cultural heritage, by applying their possibilities to taking into account the specific combinations of the attribute values. Usually, the associative classifiers prioritize the support over the confidence. The proposed classifier PGN questions this common approach and focuses on confidence first by retaining only 100% confidence rules. The classification tasks in the field of cultural heritage usually deal with data sets with many class labels. This variety is caused by the richness of accumulated culture during the centuries. Comparisons of classifier PGN with other classifiers, such as OneR, JRip and J48, show the competitiveness of PGN in recognizing multi-class datasets on collections of masterpieces from different West and East European Fine Art authors and movements.