4 resultados para Lot sizing and scheduling problems

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an uncertain version of the scheduling problem to sequence set of jobs J on a single machine with minimizing the weighted total flow time, provided that processing time of a job can take on any real value from the given closed interval. It is assumed that job processing time is unknown random variable before the actual occurrence of this time, where probability distribution of such a variable between the given lower and upper bounds is unknown before scheduling. We develop the dominance relations on a set of jobs J. The necessary and sufficient conditions for a job domination may be tested in polynomial time of the number n = |J| of jobs. If there is no a domination within some subset of set J, heuristic procedure to minimize the weighted total flow time is used for sequencing the jobs from such a subset. The computational experiments for randomly generated single-machine scheduling problems with n ≤ 700 show that the developed dominance relations are quite helpful in minimizing the weighted total flow time of n jobs with uncertain processing times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 65K10, 49M07, 90C25, 90C48.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015