14 resultados para Logical Correction
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The paper is devoted to the description of hybrid pattern recognition method developed by research groups from Russia, Armenia and Spain. The method is based upon logical correction over the set of conventional neural networks. Output matrices of neural networks are processed according to the potentiality principle which allows increasing of recognition reliability.
Resumo:
Earlier the authors have suggested a logical level description of classes which allows to reduce a solution of various pattern recognition problems to solution of a sequence of one-type problems with the less dimension. Here conditions of the effectiveness of the use of such a level descriptions are proposed.
Resumo:
An application of the heterogeneous variables system prediction method to solving the time series analysis problem with respect to the sample size is considered in this work. It is created a logical-and-probabilistic correlation from the logical decision function class. Two ways is considered. When the information about event is kept safe in the process, and when it is kept safe in depending process.
Resumo:
A verification task of proving the equivalence of two descriptions of the same device is examined for the case, when one of the descriptions is partially defined. In this case, the verification task is reduced to checking out whether logical descriptions are equivalent on the domain of the incompletely defined one. Simulation-based approach to solving this task for different vector forms of description representations is proposed. Fast Boolean computations over Boolean and ternary vectors having big sizes underlie the offered methods.
Resumo:
Authors suggested earlier hierarchical method for definition of class description at pattern recognition problems solution. In this paper development and use of such hierarchical descriptions for parallel representation of complex patterns on the base of multi-core computers or neural networks is proposed.
Resumo:
* This work was financially supported by the Russian Foundation for Basic Research, project no. 04-01-00858a.
Resumo:
The current INFRAWEBS European research project aims at developing ICT framework enabling software and service providers to generate and establish open and extensible development platforms for Web Service applications. One of the concrete project objectives is developing a full-life-cycle software toolset for creating and maintaining Semantic Web Services (SWSs) supporting specific applications based on Web Service Modelling Ontology (WSMO) framework. According to WSMO, functional and behavioural descriptions of a SWS may be represented by means of complex logical expressions (axioms). The paper describes a specialized userfriendly tool for constructing and editing such axioms – INFRAWEBS Axiom Editor. After discussing the main design principles of the Editor, its functional architecture is briefly presented. The tool is implemented in Eclipse Graphical Environment Framework and Eclipse Rich Client Platform.
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a
Resumo:
Malapropism is a semantic error that is hardly detectable because it usually retains syntactical links between words in the sentence but replaces one content word by a similar word with quite different meaning. A method of automatic detection of malapropisms is described, based on Web statistics and a specially defined Semantic Compatibility Index (SCI). For correction of the detected errors, special dictionaries and heuristic rules are proposed, which retains only a few highly SCI-ranked correction candidates for the user’s selection. Experiments on Web-assisted detection and correction of Russian malapropisms are reported, demonstrating efficacy of the described method.
Resumo:
The questions of designing multicriteria control systems on the basis of logic models of composite dynamic objects are considered.
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* Work done under partial support of Mexican Government (CONACyT, SNI), IPN (CGPI, COFAA) and Korean Government (KIPA Professorship for Visiting Faculty Positions). The second author is currently on Sabbatical leave at Chung-Ang University.
Resumo:
* This paper was made according to the program № 14 of fundamental scientific research of the Presidium of the Russian Academy of Sciences, the project 06-I-П14-052
Resumo:
The task of smooth and stable decision rules construction in logical recognition models is considered. Logical regularities of classes are defined as conjunctions of one-place predicates that determine the membership of features values in an intervals of the real axis. The conjunctions are true on a special no extending subsets of reference objects of some class and are optimal. The standard approach of linear decision rules construction for given sets of logical regularities consists in realization of voting schemes. The weighting coefficients of voting procedures are done as heuristic ones or are as solutions of complex optimization task. The modifications of linear decision rules are proposed that are based on the search of maximal estimations of standard objects for their classes and use approximations of logical regularities by smooth sigmoid functions.