16 resultados para Logic quantifiers
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Nonmonotonic Logics such as Autoepistemic Logic, Reflective Logic, and Default Logic, are usually defined in terms of set-theoretic fixed-point equations defined over deductively closed sets of sentences of First Order Logic. Such systems may also be represented as necessary equivalences in a Modal Logic stronger than S5 with the added advantage that such representations may be generalized to allow quantified variables crossing modal scopes resulting in a Quantified Autoepistemic Logic, a Quantified Autoepistemic Kernel, a Quantified Reflective Logic, and a Quantified Default Logic. Quantifiers in all these generalizations obey all the normal laws of logic including both the Barcan formula and its converse. Herein, we address the problem of solving some necessary equivalences containing universal quantifiers over modal scopes. Solutions obtained by these methods are then compared to related results obtained in the literature by Circumscription in Second Order Logic since the disjunction of all the solutions of a necessary equivalence containing just normal defaults in these Quantified Logics, is equivalent to that system.
Resumo:
The nonmonotonic logic called Reflective Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Reflective Logic with an initial set of axioms and defaults if and only if the meaning of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Reflective Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since all the laws of First Order Logic hold and since both the Barcan Formula and its converse hold.
Resumo:
The nonmonotonic logic called Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan Formula and its converse hold.
Resumo:
Reflective Logic and Default Logic are both generalized so as to allow universally quantified variables to cross modal scopes whereby the Barcan formula and its converse hold. This is done by representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before the defaults. The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are then compared by deriving metatheorems of Z that express their relationships. The main result is to show that every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the equivalence for Quantified Reflective Logic. It is further shown that Quantified Reflective Logic and Quantified Default Logic have exactly the same solutions when no default has an entailment condition.
Resumo:
The nonmonotonic logic called Autoepistemic Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Autoepistemic Logic with an initial set of axioms if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meaning of that initial set of sentences. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and unlike the original Autoepistemic Logic, it is easily generalized to the case where quantified variables may be shared across the scope of modal expressions thus allowing the derivation of quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan formula and its converse hold.
Resumo:
Logic based Pattern Recognition extends the well known similarity models, where the distance measure is the base instrument for recognition. Initial part (1) of current publication in iTECH-06 reduces the logic based recognition models to the reduced disjunctive normal forms of partially defined Boolean functions. This step appears as a way to alternative pattern recognition instruments through combining metric and logic hypotheses and features, leading to studies of logic forms, hypotheses, hierarchies of hypotheses and effective algorithmic solutions. Current part (2) provides probabilistic conclusions on effective recognition by logic means in a model environment of binary attributes.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
* This work is partially supported by CICYT (Spain) under project TIN 2005-08943-C02-001 and by UPM-CAM (Spain) under project R05/11240.
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
The "recursive" definition of Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the "recursive" fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning of the fixed-point is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original "recursive" definition of Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults.
Resumo:
A Quantified Autoepistemic Logic is axiomatized in a monotonic Modal Quantificational Logic whose modal laws are slightly stronger than S5. This Quantified Autoepistemic Logic obeys all the laws of First Order Logic and its L predicate obeys the laws of S5 Modal Logic in every fixed-point. It is proven that this Logic has a kernel not containing L such that L holds for a sentence if and only if that sentence is in the kernel. This result is important because it shows that L is superfluous thereby allowing the ori ginal equivalence to be simplified by eliminating L from it. It is also shown that the Kernel of Quantified Autoepistemic Logic is a generalization of Quantified Reflective Logic, which coincides with it in the propositional case.
Resumo:
Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be solved. However, usually SP/PS are not substantiated well enough, because their development is based on a collective expertise in which logic of natural language and expert estimation methods are used. That is why scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and vague problems.
Resumo:
The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.