24 resultados para Lipschitz trivial

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B03

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of essential variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper was partly supported by ELOST – a SSA EU project – No 27287.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research partially supported by INTAS grant 97-1644

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dedicated to the memory of our colleague Vasil Popov January 14, 1942 – May 31, 1990 * Partially supported by ISF-Center of Excellence, and by The Hermann Minkowski Center for Geometry at Tel Aviv University, Israel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is proved that there exists no extension of any non-trivial weakly normal functor of finite degree onto the Kleisli category of the inclusion hyperspace monad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching processes are built up from single-line processes, whereas the regular ones are mixtures of left-tail trivial processes with a Poisson family structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

∗Partially supported by Grant MM 409/94 of the Mininstry of Education, Science and Technology, Bulgaria. ∗∗Partially supported by Grants MM 521/95, MM 442/94 of the Mininstry of Education, Science and Technology, Bulgaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

* This work was supported by National Science Foundation grant DMS 9404431.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

∗Partially supported by Grant MM409/94 Of the Ministy of Science and Education, Bulgaria. ∗∗Partially supported by Grant MM442/94 of the Ministy of Science and Education, Bulgaria.