12 resultados para Linear Codes

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give the necessary and sufficient conditions for the extendability of ternary linear codes of dimension k ≥ 5 with minimum distance d ≡ 1 or 2 (mod 3) from a geometrical point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let nq(k, d) denote the smallest value of n for which an [n, k, d]q code exists for given integers k and d with k ≥ 3, 1 ≤ d ≤ q^(k−1) and a prime or a prime power q. The purpose of this note is to show that there exists a series of the functions h3,q, h4,q, ..., hk,q such that nq(k, d) can be expressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 94B05, 94B15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We prove the nonexistence of [g3(6, d), 6, d]3 codes for d = 86, 87, 88, where g3(k, d) = ∑⌈d/3i⌉ and i=0 ... k−1. This determines n3(6, d) for d = 86, 87, 88, where nq(k, d) is the minimum length n for which an [n, k, d]q code exists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we prove the nonexistence of arcs with parameters (232, 48) and (233, 48) in PG(4,5). This rules out the existence of linear codes with parameters [232,5,184] and [233,5,185] over the field with five elements and improves two instances in the recent tables by Maruta, Shinohara and Kikui of optimal codes of dimension 5 over F5.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper is to determine nq(k, d) for d = dk as nq(k, d) = gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 8 except for (k, q) = (7, 7), (8, 8), (8, 9).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): E.4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of digital imaging and of digital networks has made duplication of original artwork easier. Watermarking techniques, also referred to as digital signature, sign images by introducing changes that are imperceptible to the human eye but easily recoverable by a computer program. Usage of error correcting codes is one of the good choices in order to correct possible errors when extracting the signature. In this paper, we present a scheme of error correction based on a combination of Reed-Solomon codes and another optimal linear code as inner code. We have investigated the strength of the noise that this scheme is steady to for a fixed capacity of the image and various lengths of the signature. Finally, we compare our results with other error correcting techniques that are used in watermarking. We have also created a computer program for image watermarking that uses the newly presented scheme for error correction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maximal cardinality of a code W on the unit sphere in n dimensions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two methods for obtaining new upper bounds on A(n, s) for some values of n and s. We find new linear programming bounds by suitable polynomials of degrees which are higher than the degrees of the previously known good polynomials due to Levenshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein bounds [11, 12]. In such cases we find the distance distributions of the corresponding feasible maximal spherical codes. Usually this leads to a contradiction showing that such codes do not exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 97D40, 97M10, 97M40, 97N60, 97N80, 97R80