9 resultados para Let me in
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
Let in even-dimensional a±nely connected space without a torsion A2m be given a composition Xm£Xm by the affinor a¯ ®. The affinor b¯ ®, determined with the help of the eigen-vectors of the matrix (a¯ ®), de¯nes the second composition Ym £ Y m. Conjugate compositions are introduced by the condition: the a±nors of any of both compositions transform the vectors from the one position of the composition, generated by the other a±nor, in the vectors from the another its position. It is proved that the compositions de¯ne by a±nors a¯ ® and b¯ ® are conjugate. It is proved also that if the composition Xm£Xm is Cartesian and composition Ym£Y m is Cartesian or chebyshevian, or geodesic than the space A2m is affine.
Resumo:
Toric coordinates and toric vector field have been introduced in [2]. Let A be an arbitrary vector field. We obtain formulae for the divA, rotA and the Laplace operator in toric coordinates.
Resumo:
2000 Mathematics Subject Classification: 05C35.
Resumo:
ACM Computing Classification System (1998): E.4.
Resumo:
2000 Mathematics Subject Classification: 05A16, 05A17.
Resumo:
2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20.
Resumo:
2000 Mathematics Subject Classification: 53B05, 53B99.