1 resultado para Learning difficulties
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- JISC Information Environment Repository (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (7)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (1)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (2)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (28)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Escola Superior de Educação de Paula Frassinetti (3)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (4)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (5)
- Nottingham eTheses (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (16)
- Queensland University of Technology - ePrints Archive (627)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (6)
- Repositório Aberto da Universidade Aberta de Portugal (3)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (61)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (9)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (3)
- Université de Montréal, Canada (7)
- University of Michigan (4)
- University of Queensland eSpace - Australia (6)
- University of Southampton, United Kingdom (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.