2 resultados para Law of Propagation of Uncertainty

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portfolio analysis exists, perhaps, as long, as people think about acceptance of rational decisions connected with use of the limited resources. However the occurrence moment of portfolio analysis can be dated precisely enough is having connected it with a publication of pioneer work of Harry Markovittz (Markovitz H. Portfolio Selection) in 1952. The model offered in this work, simple enough in essence, has allowed catching the basic features of the financial market, from the point of view of the investor, and has supplied the last with the tool for development of rational investment decisions. The central problem in Markovitz theory is the portfolio choice that is a set of operations. Thus in estimation, both separate operations and their portfolios two major factors are considered: profitableness and risk of operations and their portfolios. The risk thus receives a quantitative estimation. The account of mutual correlation dependences between profitablenesses of operations appears the essential moment in the theory. This account allows making effective diversification of portfolio, leading to essential decrease in risk of a portfolio in comparison with risk of the operations included in it. At last, the quantitative characteristic of the basic investment characteristics allows defining and solving a problem of a choice of an optimum portfolio in the form of a problem of quadratic optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of the so-called optical constants (complex refractive index N, which is usually a function of the wavelength, and physical thickness D) of thin films from experimental data is a typical inverse non-linear problem. It is still a challenge to the scientific community because of the complexity of the problem and its basic and technological significance in optics. Usually, solutions are looked for models with 3-10 parameters. Best estimates of these parameters are obtained by minimization procedures. Herein, we discuss the choice of orthogonal polynomials for the dispersion law of the thin film refractive index. We show the advantage of their use, compared to the Selmeier, Lorentz or Cauchy models.