1 resultado para Langmuir binary models
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (137)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (10)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (200)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- DRUM (Digital Repository at the University of Maryland) (2)
- Glasgow Theses Service (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (30)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (13)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (44)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (62)
- Scielo Saúde Pública - SP (41)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (23)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (4)
- Universidade do Minho (26)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (153)
- University of Queensland eSpace - Australia (150)
- University of Washington (1)
Resumo:
In this paper the low autocorrelation binary sequence problem (LABSP) is modeled as a mixed integer quadratic programming (MIQP) problem and proof of the model’s validity is given. Since the MIQP model is semidefinite, general optimization solvers can be used, and converge in a finite number of iterations. The experimental results show that IQP solvers, based on this MIQP formulation, are capable of optimally solving general/skew-symmetric LABSP instances of up to 30/51 elements in a moderate time. ACM Computing Classification System (1998): G.1.6, I.2.8.