2 resultados para Kalai, Ehud. Rational learning lead to Nash equilibrium

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper explores the functionalities of eight start pages and considers their usefulness when used as a mashable platform for deployment of personal learning environments (PLE) for self-organized learners. The Web 2.0 effects and eLearning 2.0 strategies are examined from the point of view of how they influence the methods of gathering and capturing data, information and knowledge, and the learning process. Mashup technology is studied in order to see what kind of components can be used in PLE realization. A model of a PLE for self-organized learners is developed and it is used to prototype a personal learning and research environment in the start pages Netvibes, Pageflakes and iGoogle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.