10 resultados para Iteration
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
Resumo:
The general iteration method for nonexpansive mappings on a Banach space is considered. Under some assumption of fast enough convergence on the sequence of (“almost” nonexpansive) perturbed iteration mappings, if the basic method is τ−convergent for a suitable topology τ weaker than the norm topology, then the perturbed method is also τ−convergent. Application is presented to the gradient-prox method for monotone inclusions in Hilbert spaces.
Resumo:
In this work we give su±cient conditions for k-th approximations of the polynomial roots of f(x) when the Maehly{Aberth{Ehrlich, Werner-Borsch-Supan, Tanabe, Improved Borsch-Supan iteration methods fail on the next step. For these methods all non-attractive sets are found. This is a subsequent improvement of previously developed techniques and known facts. The users of these methods can use the results presented here for software implementation in Distributed Applications and Simulation Environ- ments. Numerical examples with graphics are shown.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
AMS Subj. Classification: Primary 20N05, Secondary 94A60
Resumo:
This work reports on a new software for solving linear systems involving affine-linear dependencies between complex-valued interval parameters. We discuss the implementation of a parametric residual iteration for linear interval systems by advanced communication between the system Mathematica and the library C-XSC supporting rigorous complex interval arithmetic. An example of AC electrical circuit illustrates the use of the presented software.
Resumo:
ACM Computing Classification System (1998): I.2.8, I.2.10, I.5.1, J.2.
Resumo:
AMS subject classification: 68Q22, 90C90
Resumo:
AMS subject classification: 65K10, 49M07, 90C25, 90C48.
Resumo:
AMS subject classification: 90C29.